Jump to content

Recommended Posts

Posted

I've been working hard on getting Pablo rankings into shape.  I have a lot more data now than I had 2 weeks ago, and so things are looking a lot better now.  I'll drop the rankings below, but before doing that, a few things to note

1) I am now including the ratings for each wrestler, so I should talk a little bit about that.  Recall the premise of the system, that an outcome of a match is a probability.  The bigger the difference between the wrestlers, the higher the probability that the better wrestler will win.  The closer they are, the closer the probability is to being 50% (remember, if a wrestler goes up against his duplicate, the it's a coin flip whether green or red is going to win).  So this is how to interpret Pablo ratings.  The bigger the ratings difference between two wrestlers, the higher the probability that the better wrestler wins.

We can see this in action if we look at the outcomes from the conference tournaments.  I calculated Pablo rankings before the conference tournaments and then looked at the outcomes of the matches that took place, taking into account the difference in Pablo ratings of the two wrestlers.  After binning things up, I got the plot below, which shows the likelihood of winning as a function of the ratings difference (note it is symmetric around 0). 

image.jpeg.583897397bfdf51771e4c7af2d703c42.jpeg

So if the ratings difference is something like 150, the favored wrestler won about 55% of the time.  When the difference was in the 2000 range, the favored wrestler won about 85% of the time.  Notice that there are diminishing returns.  When the difference gets very large, you don't improve the winning percentage as much as the difference gets bigger.  In fact, in the conference tournaments, every wrestler who was at least 3000 Pablo points higher than their opponent won (something like 77-0), and it didn't matter if the difference was 3000 or 5000.  This is exactly what you'd expect, that as the difference gets larger, the winning percentage will asymptote to 0 or 100%.

The challenge here is that the winning percentage clearly has a relationship with ratings difference, but it's not simple.  But, in fact, it is, if you know how to do it.  You may remember from your introduction to stats class that this is a standard functional curve that is integrated normal distribution.  As such, we can evaluated it that way.  In particular, what I do is convert that winning percentage into a z-score, which is basically the number of standard deviations from the mean.  This is done very easily in any math program (and I use Excel, where it is the NormSInv function).  I just call it the "Pablo Transform" but in the end, it's just the z-score.  To turn them into Pablo ratings, I basically use z-score*2000, where that 2000 value is just a matter to give convenient ratings.

Here's why this is useful.  If I take the data above and do the transform on the winning percentages, I get the graph below

image.jpeg.239b0b96074c73421cf9a349e4e7a62e.jpeg

The thing that should jump out at you is the fact this is linear.  And very linear.  Now, that doesn't have to be the case (I've seen examples where it isn't), but that fact it is is a very good sign - it suggests that the underlying Pablo model is holding up. 

I will note that being linear is not merely enough, what also matters is the slope.  In this type of plot, the higher the slope, the better.  I mean, if it's a line but the slope is 0, that's worthless.  Remember that a 0 difference indicates a 50/50 win probability, so if has a slope of 0, then that means it's always a 50/50 outcome.  That isn't useful.  On the other hand, if the slope is infinitely large, it means that the favorite always wins.  By design, Pablo rankings are built on that concept of the rating difference = z-score*2000, and so that is what is plotted here.  If Pablo is working as expected, the slope of this line should be 1.  In fact, if you have a good eye, you will see that the slope is actually closer to 1.4, so higher than expected.  That means, in fact, Pablo is even working a little better than designed.  

The TL; DR summary:  Pablo has demonstrated predictive ability, and the difference in Pablo ratings can be used to predict a win probability.  More on that in a separate post.

2) I've done a lot of analysis to get the best values I can for evaluating outcomes.  This is an always evolving process that improves as I get more data.  However, the results show that I'm getting close, and I think the underlying model is firm.  In the current model, a pin is, on average, slightly better than an average outcome, but the data indicate a quick pin means more than a late pin, so this is programmed in.  I've built in some subtleties in terms of the fitting.

3) One issue that I did include that is not as firm is the time dependence.  The data I have is not great, but suggests that matches that took place 140 days ago are about half as informative as something recent.  It's not a strong correlation, but that value is consistent with what I've found for other college sports.  Therefore, I have put in a time dependence (it's an exponential decrease with a half-life of 140 days). 

4) The rating scale is based on the median wrestler at each weight rated 5000.  In order to be included in the ratings, a wrestler has to have at least 6 matches at a given weight in my database, but everyone with more than 5 matches is included.  Doesn't matter if they are unattached or on non-D1.  Non-D1 wrestlers must have at least 6 matches against D1 to be included, but D1 wrestlers just need to have 6 matches against anybody.  There can be more than 1 ranked wrestler from a team at a given weight, as long as they have at least 6 matches.  (FWIW, I include the outcomes for wrestlers who don't have 6 matches in the rankings calculation, I just don't include them in the rankings I show you all)

Whew, that is long enough!  Let's just get to the rankings!  

I think you will find them better than the last ones.

  • Bob 1
  • Brain 1
Posted
    125       133  
1 . 125:Purdue_Matt Ramos 9125   1. 133:Illinois_Lucas Byrd 8476
2 . 125:Penn St_Luke Lilledahl 8500   2. 133:Iowa_Drake Ayala 8098
3 . 125:Wisconsin_Nicolar Rivera 8353   3. 133:Little Rock_Nasir Bailey 8073
4 . 125:Oklahoma St_Troy Spratley 8322   4. 133:Ohio St_Ben Davino 7990
5 . 125:West Virginia_Jett Strickenberger 8242   5. 133:Northern Colorado_Dominick Serrano 7763
6 . 125:Virginia Tech_Eddie Ventresca 8210   6. 133:Virginia Tech_Connor McGonagle 7671
7 . 125:Arizona St_Richard Figueroa 8182   7. 133:Michigan_Dylan Ragusin 7577
8 . 125:Nebraska_Caleb Smith 7998   8. 133:Ohio St_Nic Bouzakis 7542
9 . 125:NC St_Vince Robinson 7931   9. 133:Maryland_Braxton Brown 7503
10 . 125:Northern Colorado_Stevo Poulin 7709   10. 133:Penn St_Braeden Davis 7471
11 . 125:Lehigh_Sheldon Seymour 7657   11. 133:Iowa St_Evan Frost 7467
12 . 125:Ohio St_Brendan McCrone 7516   12. 133:Cal Poly_Zeth Romney 7466
13 . 125:Rutgers_Dean Peterson 7496   13. 133:Stanford_Tyler Knox 7464
14 . 125:Princeton_Marc-Anthony McGowan 7354   14. 133:Nebraska_Jacob Van Dee 7416
15 . 125:South Dakota St_Brady Roark 7322   15. 133:Iowa St_Garrett Grice 7415
16 . 125:Pennsylvania_Max Gallagher 7295   16. 133:North Dakota St_Kyle Burwick 7269
17 . 125:Oregon St_Maximo Renteria 7214   17. 133:Indiana_Angelo Rini 7199
18 . 125:Indiana_Jacob Moran 7210   18. 133:Lock Haven_Anthony Noto 7091
19 . 125:Northern Illinois_Blake West 7201   19. 133:Wisconsin_Zan Fugitt 7091
20 . 125:Nebraska_Kael Lauridsen 7146   20. 133:Rutgers_Dylan Shawver 7082
21 . 125:North Carolina_Spencer Moore 7111   21. 133:Pennsylvania_Ryan Miller 7073
22 . 125:Oklahoma_Antonio Lorenzo 7071   22. 133:Northern Iowa_Julian Farber 7023
23 . 125:Penn St_Kurt McHenry 7002   23. 133:Northern Iowa_Cory Land 6976
24 . 125:Minnesota_Cooper Flynn 6975   24. 133:North Carolina_Ethan Oakley 6853
25 . 125:Nebraska_Alan Koehler 6962   25. 133:Minnesota_Tyler Wells 6845
26 . 125:Oklahoma_Beric Jordan 6919   26. 133:Minnesota_Jager Eisch 6725
27 . 125:West Virginia_Jace Schafer 6915   27. 133:Lehigh_Matty Lopes 6711
28 . 125:Ohio St_Vinny Kilkeary 6793   28. 133:Gardner-Webb_Takeo Davis 6707
29 . 125:Northern Iowa_Trever Anderson 6703   29. 133:Chattanooga_Blake Boarman 6693
30 . 125:Iowa St_Kysen Terukina 6693   30. 133:Oklahoma St_Cael Hughes 6656
31 . 125:Campbell_Anthony Molton 6683   31. 133:Bucknell_Kurt Phipps 6650
32 . 125:South Dakota St_Tanner Jordan 6677   32. 133:Army_Ethan Berginc 6625
33 . 125:Missouri_Gage Walker 6670   33. 133:Cornell_Tyler Ferrara 6596
34 . 125:Oklahoma St_Sam Smith 6629   34. 133:Cornell_Brett Ungar 6585
35 . 125:Army_Charlie Farmer 6528   35. 133:South Dakota St_Derrick Cardinal 6580
36 . 125:Cornell_Greg Diakomihalis 6514   36. 133:North Carolina_Derek Guanajuato 6537
37 . 125:North Dakota St_tristan daugherty 6483   37. 133:Oklahoma St_Reece Witcraft 6463
38 . 125:Indiana_Blaine Frazier 6459   38. 133:Rutgers_Mason Gibson 6461
39 . 125:Iowa St_Ethan Perryman 6435   39. 133:South Dakota St_Logan Swensen 6451
40 . 125:North Dakota St_Ezekiel Witt 6414   40. 133:Missouri_Kade Moore 6439
Posted
  141       149  
1. 141:Ohio St_Jesse Mendez 9273   1. 149:Nebraska_Ridge Lovett 9369
2. 141:Nebraska_Brock Hardy 9225   2. 149:Virginia Tech_Caleb Henson 9106
3. 141:Lehigh_Luke Stanich 8617   3. 149:Penn St_Shayne Van Ness 9090
4. 141:Penn St_Beau Bartlett 8613   4. 149:West Virginia_Ty Watters 8447
5. 141:Minnesota_Vance Vombaur 8466   5. 149:Iowa_Kyle Parco 8407
6. 141:Oklahoma St_Tagen Jamison 8462   6. 149:Spartan Combat RTC_Jaxon Joy 8298
7. 141:Northern Iowa_Cael Happel 8436   7. 149:Illinois_Kannon Webster 8263
8. 141:Northern Colorado_Andrew Alirez 8344   8. 149:Iowa St_Anthony Echemendia 8231
9. 141:Michigan_Sergio Lemley 8021   9. 149:North Carolina_Lachlan McNeil 8162
10. 141:Navy_Josh Koderhandt 7979   10. 149:Northern Iowa_Colin Realbuto 7986
11. 141:Pennsylvania_CJ Composto 7977   11. 149:Oregon St_Ethan Stiles 7847
12. 141:Iowa St_Jacob Frost 7876   12. 149:Rider_Sammy Alvarez 7828
13. 141:Rutgers_Joesph Oliveri 7742   13. 149:Pennsylvania_Cross Wasilewski 7808
14. 141:Pennsylvania_Evan Mougalian 7522   14. 149:Cal Poly_Chance Lamer 7784
15. 141:Virginia Tech_Sam Latona 7481   15. 149:Princeton_Ty Whalen 7742
16. 141:Lock Haven_Wyatt Henson 7370   16. 149:Little Rock_jordan williams 7729
17. 141:Rutgers_Joseph Olivieri 7353   17. 149:Stanford_Jaden Abas 7585
18. 141:South Dakota St_Tyson Peach 7352   18. 149:Ohio St_Dylan D`Emilio 7581
19. 141:Virginia_Dylan Cedeno 7227   19. 149:Pittsburgh_Kade Brown 7528
20. 141:Columbia_Lorenzo Frezza 7089   20. 149:Iowa St_Paniro Johnson 7479
21. 141:Princeton_Eligh Rivera 7087   21. 149:Oklahoma St_Carter Young 7185
22. 141:Stanford_Jason Miranda 7056   22. 149:George Mason_Kaden Cassidy 7105
23. 141:Missouri_Josh Edmond 7009   23. 149:Cornell_Ethan Fernandez 6972
24. 141:Purdue_Greyson Clark 7007   24. 149:Iowa_Caleb Rathjen 6960
25. 141:Nebraska_Blake Cushing 6962   25. 149:NC St_Koy Buesgens 6884
26. 141:Arizona St_Emilio Ysaguirre Jr 6943   26. 149:Edinboro_Ryan Michaels 6878
27. 141:Cornell_Joshua Saunders 6906   27. 149:Rutgers_Andrew Clark 6838
28. 141:South Dakota St_Julian Tagg 6842   28. 149:Arizona St_Jesse Vasquez 6823
29. 141:Gardner-Webb_Todd Carter 6767   29. 149:Lehigh_Malyke Hines 6815
30. 141:Illinois_Danny Pucino 6747   30. 149:Virginia_Jack Gioffre 6806
31. 141:Ohio St_Andre Gonzales 6726   31. 149:Central Michigan_Jimmy Nugent 6765
32. 141:Bucknell_Dylan Chappell 6717   32. 149:Wyoming_Gabe Willochell 6764
33. 141:Oklahoma_Mosha Schwartz 6716   33. 149:North Dakota St_Gavin Drexler 6758
34. 141:Drexel_Jordan Soriano 6687   34. 149:Central Michigan_Mason Shrader 6757
35. 141:Iowa_Cullan Schriever 6674   35. 149:Oklahoma_Willie McDougald 6755
36. 141:Pittsburgh_Briar Priest 6639   36. 149:Pittsburgh_Finn Solomon 6716
37. 141:Utah Valley_Haiden Drury 6602   37. 149:Army_Trae McDaniel 6631
38. 141:West Virginia_Jordan Titus 6571   38. 149:West Virginia_Sam Hillegas 6617
39. 141:Iowa_Jace Rhodes 6559   39. 149:Northwestern_August Hibler 6534
40. 141:North Carolina_Jayden Scott 6557   40. 149:Iowa St_Kane Naaktgeboren 6503
Posted
  157       165  
1. 157:Cornell_Meyer Shapiro 9485   1. 165:Penn St_Mitchell Mesenbrink 11002
2. 157:Penn St_Tyler Kasak 9145   2. 165:Iowa_Mike Caliendo 9911
3. 157:Ohio St_Brandon Cannon 8320   3. 165:West Virginia_Peyton Hall 8930
4. 157:Nebraska_Antrell Taylor 8246   4. 165:Missouri_Cam Steed 8545
5. 157:Ohio St_Paddy Gallagher 8101   5. 165:Utah Valley_Terrell Barraclough 8466
6. 157:Virginia Tech_Rafael Hipolito Jr 8089   6. 165:Michigan_Brock Mantanona 8391
7. 157:Iowa_Jacori Teemer 8074   7. 165:Lehigh_Max Brignola 8372
8. 157:Purdue_Joey Blaze 8035   8. 165:Oklahoma St_Cameron Amine 8359
9. 157:Northern Iowa_Ryder Downey 8018   9. 165:Arizona St_Nicco Ruiz 8307
10. 157:Penn St_Alex Facundo 7997   10. 165:Cornell_Julian Ramirez 8167
11. 157:Northern Colorado_Vinny Zerban 7984   11. 165:Minnesota_Andrew Sparks 8071
12. 157:Minnesota_Charlie Millard 7971   12. 165:Michigan_Beau Mantanona 8041
13. 157:Little Rock_Matty Bianchi 7932   13. 165:Nebraska_Bubba Wilson 7912
14. 157:NC St_Ed Scott 7856   14. 165:South Dakota St_Drake Rhodes 7912
15. 157:Ohio St_Brock Herman 7770   15. 165:Stanford_Hunter Garvin 7749
16. 157:Northwestern_Trevor Chumbley 7666   16. 165:Nebraska_Christopher Minto 7716
17. 157:Ohio University_Peyten Kellar 7608   17. 165:Illinois_Braeden Scoles 7692
18. 157:Maryland_Ethen Miller 7585   18. 165:Army_Gunner Filipowicz 7571
19. 157:Minnesota_Tommy Askey 7580   19. 165:Ohio St_Paddy Gallagher 7488
20. 157:Central Michigan_Johnny Lovett 7454   20. 165:Northwestern_Maxx Mayfield 7411
21. 157:Pennsylvania_Jude Swisher 7449   21. 165:Iowa St_Aiden Riggins 7254
22. 157:South Dakota St_Cobe Siebrecht 7448   22. 165:Northern Iowa_Jack Thomsen 7227
23. 157:Oklahoma St_Caleb Fish 7397   23. 165:Little Rock_Joseph Bianchi 7203
24. 157:Iowa St_Cody Chittum 7285   24. 165:Ohio St_Sammy Sasso 7164
25. 157:Michigan_Chase Saldate 7232   25. 165:George Mason_Evan Maag 7113
26. 157:Pittsburgh_Dylan Evans 7168   26. 165:Appalachian St_Will Miller 6976
27. 157:Brown_Blake Saito 7104   27. 165:South Dakota St_Marcus Espinoza-Owens 6970
28. 157:Oregon St_CJ Hamblin 7077   28. 165:Columbia_Cesar Alvan 6934
29. 157:George Mason_DJ Mcgee 7043   29. 165:Minnesota_Blaine Brenner 6918
30. 157:North Carolina_Sonny Santiago 6953   30. 165:Virginia_Nick Hamilton 6900
31. 157:Missouri_James Conway 6924   31. 165:Bucknell_Noah Mulvaney 6818
32. 157:Wyoming_Jared Hill 6874   32. 165:NC St_Derek Fields 6719
33. 157:Stanford_Grigor Cholakyan 6849   33. 165:Pittsburgh_Jared Keslar 6707
34. 157:Lehigh_Logan Rozynski 6840   34. 165:Virginia Tech_Mac Church 6653
35. 157:Oregon St_Ethan Stiles 6830   35. 165:Indiana_Tyler Lillard 6609
36. 157:Columbia_Richard Fedalen 6784   36. 165:Navy_Dylan Elmore 6554
37. 157:North Dakota St_Maxwell Petersen 6739   37. 165:Binghamton_Carter Baer 6518
38. 157:Chattanooga_Noah Castillo 6718   38. 165:Indiana_Derek Gilcher 6504
39. 157:Cal Poly_Legend Lamer 6689   39. 165:Rutgers_Anthony White 6491
40. 157:Harvard_James Harrington 6601   40. 165:Hofstra_Kyle Mosher 6482
Posted
  174       184  
1. 174:Missouri_Keegan O`Toole 10087   1. 184:Northern Iowa_Parker Keckeisen 10350
2. 174:Penn St_Levi Haines 10031   2. 184:Penn St_Carter Starocci 10041
3. 174:Oklahoma St_Dean Hamiti Jr 9906   3. 184:Oklahoma St_Dustin Plott 8968
4. 174:Iowa_Patrick Kennedy 8926   4. 184:Minnesota_Max McEnelly 8895
5. 174:Nebraska_Lenny Pinto 8877   5. 184:Iowa_Angelo Ferrari 8482
6. 174:Ohio St_Carson Kharchla 8839   6. 184:South Dakota St_Bennett Berge 8437
7. 174:Illinois_Dan Braunagel 8507   7. 184:Ohio St_Rocco Welsh 8254
8. 174:Ohio University_Garrett Thompson 8458   8. 184:Cornell_Chris Foca 8076
9. 174:Binghamton_Brevin Cassella 8348   9. 184:Iowa St_Evan Bockman 7816
10. 174:North Carolina_Joshua Ogunsanya 8321   10. 184:Iowa_Gabe Arnold 7770
11. 174:South Dakota St_Cade DeVos 8304   11. 184:Maryland_Jaxon Smith 7762
12. 174:Stanford_Lorenzo Norman 8185   12. 184:Nebraska_Silas Allred 7703
13. 174:Pittsburgh_Luca Augustine 8173   13. 184:Oklahoma_Deanthony Parker Jr 7638
14. 174:Cornell_Simon Ruiz 8170   14. 184:NC St_Dylan Fishback 7560
15. 174:Navy_Danny Wask 8115   15. 184:Pittsburgh_Reece Heller 7518
16. 174:NC St_Matthew Singleton 8046   16. 184:Wyoming_Eddie Neitenbach 7502
17. 174:Iowa_Nelson Brands 7939   17. 184:Illinois_Edmond Ruth 7279
18. 174:Oklahoma_Gaven Sax 7913   18. 184:Indiana_Donnell Washington 7242
19. 174:Bucknell_Myles Takats 7899   19. 184:Rider_Isaac Dean 7216
20. 174:Iowa St_MJ Gaitan 7700   20. 184:Ohio St_Ryder Rogotzke 7216
21. 174:Northern Iowa_Jared Simma 7685   21. 184:West Virginia_Ian Bush 7188
22. 174:Virginia Tech_Lennox Wolak 7474   22. 184:Penn St_Zack Ryder 7123
23. 174:Pennsylvania_Nick Incontrera 7363   23. 184:Princeton_Kole Mulhauser 6980
24. 174:Minnesota_Clayton Whiting 7341   24. 184:Northern Iowa_CJ Walrath 6927
25. 174:Rutgers_Jackson Turley 7299   25. 184:Edinboro_Jared McGill 6908
26. 174:Little Rock_Tyler Brennan 7254   26. 184:North Carolina_Gavin Kane 6904
27. 174:Cornell_Christian Hansen 7244   27. 184:Indiana_Sam Goin 6796
28. 174:Appalachian St_Lucas Uliano 7213   28. 184:North Dakota St_Aidan Brenot 6781
29. 174:Oregon St_Sean Harman 7206   29. 184:Cornell_Colt Barley 6777
30. 174:Minnesota_Ethan Riddle 7198   30. 184:Oklahoma St_Jersey Robb 6692
31. 174:Central Michigan_Alex Cramer 7188   31. 184:Hofstra_Ross McFarland 6587
32. 174:West Virginia_Brody Conley 7169   32. 184:Missouri_Colton Hawks 6582
33. 174:Michigan_Joseph Walker 7108   33. 184:Rutgers_Shane Cartagena-Walsh 6525
34. 174:Army_Dalton Harkins 7097   34. 184:Purdue_James Rowley 6511
35. 174:Virginia_Rocco Contino 7053   35. 184:Columbia_Nick Fine 6502
36. 174:Nebraska_Leandro Araujo 7033   36. 184:George Mason_Malachi DuVall 6459
37. 174:Lock Haven_Avery Bassett 7008   37. 184:Utah Valley_Caleb Uhlenhopp 6407
38. 174:Drexel_Jasiah Queen 6994   38. 184:Unattached_James Conway 6385
39. 174:North Dakota St_Daniel Magayna 6979   39. 184:Pennsylvania_Maximus Hale 6370
40. 174:Chattanooga_Sergio Desiante 6964   40. 184:The Citadel_Billy Janzer 6309
Posted
  197       285  
1. 197:Penn St_Josh Barr 10358   1. 285:Minnesota_Gable Steveson 11353
2. 197:Iowa_Stephen Buchanan 10120   2. 285:Oklahoma St_Wyatt Hendrickson 10522
3. 197:Michigan_Jacob Cardenas 9848   3. 285:Penn St_Greg Kerkvliet 9967
4. 197:Penn St_Lucas Cochran 8768   4. 285:NC St_Isaac Trumble 9721
5. 197:CSU Bakersfield_AJ Ferrari 8758   5. 285:Ohio St_Nick Feldman 8690
6. 197:Illinois_Zac Braunagel 8712   6. 285:Michigan_Joshua Heindselman 8659
7. 197:Lehigh_Michael Beard 8546   7. 285:Lehigh_Owen Trephan 8645
8. 197:Little Rock_stephen little 8493   8. 285:Campbell_Taye Ghadiali 8623
9. 197:Nebraska_Camden McDanel 8425   9. 285:Arizona St_Cohlton Schultz 8503
10. 197:Minnesota_Isaiah Salazar 8348   10. 285:Virginia Tech_Jimmy Mullen 8310
11. 197:Oregon St_Trey Munoz 8343   11. 285:Iowa_Ben Kueter 8266
12. 197:Pittsburgh_Mac Stout 8336   12. 285:Illinois_Luke Luffman 8238
13. 197:Missouri_Aeoden Sinclair 8326   13. 285:Penn St_Cole Mirasola 8204
14. 197:Oklahoma St_Luke Surber 8244   14. 285:Rutgers_Yaraslau Slavikouski 8004
15. 197:Northern Iowa_Wyatt Voelker 8193   15. 285:Pittsburgh_Dayton Pitzer 7881
16. 197:Penn St_Connor Mirasola 8156   16. 285:Maryland_Seth Nevills 7833
17. 197:Oklahoma St_Cody Merrill 8080   17. 285:Virginia Tech_Hunter Catka 7721
18. 197:Princeton_Luke Stout 8069   18. 285:Cal Poly_Trevor Tinker 7621
19. 197:Northwestern_Evan Bates 8027   19. 285:Rider_David Szuba 7530
20. 197:Ohio St_Luke Geog 7809   20. 285:Army_Brady Colbert 7439
21. 197:South Dakota St_Zach Glazier 7661   21. 285:Indiana_Jacob Bullock 7437
22. 197:Wyoming_Joseph Novak 7459   22. 285:Morgan St_Xavier Doolin 7156
23. 197:West Virginia_Ian Bush 7431   23. 285:Missouri_Seth Nitzel 7100
24. 197:Minnesota_Gavin Nelson 7421   24. 285:South Dakota St_Luke Rasmussen 7024
25. 197:Stanford_Nikolas Stemmet 7314   25. 285:Oklahoma_Juan Mora 7015
26. 197:Ohio St_Seth Shumate 7223   26. 285:Binghamton_Cory Day 7014
27. 197:Indiana_Gabe Sollars 7197   27. 285:Lock Haven_Gavin Hoffman 6971
28. 197:Virginia Tech_Sonny Sasso 7196   28. 285:Stanford_Peter Ming 6908
29. 197:Iowa St_Christian Carroll 7180   29. 285:Army_Lucas Stoddard 6887
30. 197:The Citadel_Patrick Brophy 7165   30. 285:Iowa St_Daniel Herrera 6859
31. 197:Rutgers_John Poznanski 7083   31. 285:North Carolina_Nolan Neves 6813
32. 197:Virginia Tech_Andy Smith 7074   32. 285:Northern Iowa_Lance Runyon 6805
33. 197:Drexel_Mickey O'Malley 7015   33. 285:Cleveland St_Daniel Bucknavich 6805
34. 197:Michigan St_Remy Cotton 7008   34. 285:Purdue_Hayden Filipovich 6781
35. 197:West Virginia_Rune Lawrence 6953   35. 285:Ohio University_Jordan Greer 6761
36. 197:Campbell_Levi Hopkins 6946   36. 285:Navy_Spencer Lanosga 6634
37. 197:Lehigh_JT Davis 6945   37. 285:Cornell_Ashton Davis 6585
38. 197:Bucknell_Dillon Bechtold 6725   38. 285:Minnesota_Bennett Tabor 6571
39. 197:Iowa St_Sawyer Bartelt 6710   39. 285:Nebraska_Harley Andrews 6519
40. 197:Northern Iowa_Kalob Runyon 6660   40. 285:Duke_Connor Barket 6496
  • Fire 1
Posted

First of all, this is great work. Thank you.

Second,* the rankings include redshirts, backups and injured wrestlers who are not in NCAAs. Any way to remove the guys ineligible for RPI/CR (to limit the field to starters eligible for the postseason) and possibly provide the rankings for NQs who aren't in the top 40? (As a Cornell fan, I see that Milani and Dellagatta are both outside this top-40.)

* Outside of work hours I might do some of this and anyone else is free to chip in!

Posted
2 minutes ago, ugarles said:

First of all, this is great work. Thank you.

Second,* the rankings include redshirts, backups and injured wrestlers who are not in NCAAs. Any way to remove the guys ineligible for RPI/CR (to limit the field to starters eligible for the postseason) and possibly provide the rankings for NQs who aren't in the top 40? (As a Cornell fan, I see that Milani and Dellagatta are both outside this top-40.)

* Outside of work hours I might do some of this and anyone else is free to chip in!

So if you see the other thread on Championship probabilities, I looked at the results for just the qualifiers.  However, I just listed their probabilities and didn't show their ratings.

You will have to give me until tomorrow, but I can edit those posts to list the ratings and rankings of all the wrestlers in the tournament.  

I will probably replace all the lists that are in that thread (if I am still allowed to edit), because I like your suggestion, and it is a better way to present it than what I have done.

  • Fire 1
Posted

If you want to see more of the rankings for those wrestlers competing in the NCAA championships, see my new posts in the Probability thread.  Includes rankings and ratings for the competing wrestlers outside of the top 40.

Posted

The question came up the other day about bonus points, so I've taken a look at how we can predict bonus points based on Pablo ratings.  Using the predictions for conference tournaments, here is the distribution of outcomes for wins as a function of Pablo rating differences

image.jpeg.8ac9532f98492c109b083c64655c9794.jpeg

So when the rating difference is below about 200, something like 84% of the matches won by the favorite are decided by a regular decision (when the rating difference is that low, the breakdown of losses is pretty similar).  9% are falls, 5% MDs and the very rare TF.  But when you get to other end, where the difference is greater than 3000, then it's only 14% regular decision, with something like 37% MD, 33% TF and 15% falls.  There is a pretty steady increase in the rate of MDs and TFs as you increase the rating difference, but there looks like there is a step of MD going to TF at about 2000.  Although there is a little bit of an increase in the pin rate, it's really not all that much, consistent with the idea that pins are not completely about difference in quality.  Yeah, when the difference is larger, it's more likely to be a pin, but not by much (maybe 50% greater than when they are even), unlike MDs and (especially) TFs which increase big time.

From these data, we can talk about expected returns in terms of bonus points.  If we take a dual approach, scoring 3,4,5,6, then we can talk about the average expected points for a ratings difference.  For example, if the difference is around 150, the average value of a win is 3.3 points.  List below

150 3.3

425 3.4

715 3.5

1125 3.6

1485 3.8

1945 3.9

2515 4.2

3300 4.5

So by the time the rating difference gets to 2000, then the average match outcome is a MD (and scoring-wise, a MD is a tad better than a fall (because falls are not strongly correlated with ratings difference)).  Out in the 3500 range, the average outcome is somewhere between a MD and TF.

What about tournament activity points?  We can do that as well. Using 1, 1.5, 2 as the bonus points, we have

150 .25

425 .34

715 .40

1125 .51

1485 .64

1945 .70

2515 .97

3300 1.18

Same conclusions, but different values.

The lesson here is, if you use Pablo ratings to predict points, assume chalk and count matches and advancements, you can add on the expected bonus points to get a more refined estimate.

 

  • Fire 1
Posted

125:
#18 Moran over #15 Renteria (Pablo: Moran)

133:
#23 Spidle over #10 Shawver (Pablo: Shawver)
#21 Rini over #12 Oakley (Pablo: Rini)
#18 Farber over #15 Noto (Pablo: Noto*)

141:
#18 Tagg over #15 Olivieri (Pablo: Olivieri)
#20 Saunders over #13 Carter (Pablo: Saunders)
#21 Chappell over #12 Latona (Pablo: Latona)

149:
#33 Travis* over #32 Denkins (Pablo: Travis, but...)
#29 Gioffre over #4 Johnson (Pablo: Johnson*)
#19 Rutgers over #14 Lamer (Pablo: Lamer)
#17 Abas over #16 McDaniel (Pablo: Abas)

157:
#23 Saldate over #10 Miller (Pablo: Miller*)
#20 Chumbley over #13 Hill (Pablo: Chumbley)

165:
#33 Amaker over #32 Keslar (Pablo: Keslar)
#19 Thomsen over #14 Rhodes (Pablo: Rhodes)
#18 Mayfield over #15 Ruiz (Pablo: Ruiz)

174:
#33 Wilson over #32 McGill (??? - Pablo had the UALR guy)
#25 Harkins over #8 Pinto (Pablo: Pinto)
#24 Wolak over #9 Karchla (Pablo: Karchla)
#23 Gaitan over #10 Cramer (Pablo: Gaitan*)
#21 Ogunsanya over Takats (Pablo: Ogunsanya)
#18 Sax over #15 Augustine (Pablo: Augustine)

184:
#20 Fine over #13 Bockman (Pablo: Bockman)

197:
#26 Zurawski over #7 Voelker (Pablo: Voelker)
#25 Brophy over #8 Surber (Pablo: Surber)
#24 Sollars over #9 Braunagel (Pablo: Braunagel)
#23 Shumate over #10 Salazar (Pablo: Salazar)
#19 Smth over #14 Glazier (Pablo: Glazier)

285:
#33 Filipovich over #32 Monchery (Pablo: Filipovich)
#22 Colbert over #11 Mullen (Pablo: Colbert)

Obviously, this is one sided. Pablo picked 8 seed-upsets but I am not doing the work of looking for Pablo-upsets. I threw a few asterisks on matches where, whether Pablo got it right or wrong, it indicated that the higher seed that lost was seeded far too high.

Posted

To follow up on that comment, one thing I've learned over the years of doing this is that it doesn't do much good to get hung up on individual outcomes where Pablo was right or Pablo was wrong.  The NCAA tournament is like 650 matches.  There are going to be places where seeds get it right and Pablo gets it wrong, places where Pablo gets it right and seeds get it wrong, and times when both are right or both are wrong.  Remember, the Fundamental Theorem of Pablo is that upsets happen.  They must happen, so Pablo must get matches wrong.  Similarly, seeds will get some matches wrong.  In the end, we'll see.

So again, patience.  Just enjoy the action.

Go Panthers.  Go Boilers.  Go everyone who is wrestling against an Iowa guy.

 

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
  • Latest Rankings

  • College Commitments

    Co'ji Campbell

    St. Joseph Catholic Academy, Wisconsin
    Class of 2025
    Committed to Illinois
    Projected Weight: 125, 133

    Brady Collins

    Clearfield, Pennsylvania
    Class of 2025
    Committed to Lehigh
    Projected Weight: 165, 174

    Abe Hermes

    Milan Edison, Ohio
    Class of 2025
    Committed to Ohio
    Projected Weight: 141

    Jackson Albert

    Saucon Valley, Pennsylvania
    Class of 2025
    Committed to George Mason
    Projected Weight: 149, 157

    Ryan Hayes

    Methacton, Pennsylvania
    Class of 2025
    Committed to Sacred Heart
    Projected Weight: 149
×
×
  • Create New...